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A b s t r a c t .  A method  of construct ing test  problems for l inear bilevel programming problems is 
presented. The method  selects a vertex of the feasible region, 'far away' from the  solution of the  
relaxed linear programming problem, as the global solution of the bilevel problem. A predeter-  
mined number  of constraints  are systematically selected to be assigned to the  lower problem. The 
proposed method requires only local vertex search and  solutions to l inear programs. 
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1. I n t r o d u c t i o n  

The Bilevel programming problem belongs to a class of nonconvex global opti- 
mization problems with numerous and diverse applications (see Vicente and Cala- 
mai [24] for a recent comprehensive review of the literature). As a result, bilevel 
programming has taken an important  role in the field of global optimization [1], 
[22], [23], [24]. A number of algorithms has been proposed to solve linear bilevel 
and to some extent nonlinear bilevel optimization problems [2], [8], [24]. To eval- 
uate these algorithms and measure their efficiency, complexity, and applicability, 
often one needs to have a variety of test problems with known global solutions. To 
date, there have been many papers on test generation of other nonconvex optimiza- 
tion problems such as reverse convex programming [14], [16], concave minimiza- 
tion [9], [14], [15], [16], [18], and quadratic programs [18], [19], [20]. No methods 
have been available for generation of bilevel programming test problems, except for 
the recent work of Calamie and Vicente [6], [7]. Their method requires a specific 
construction of a two-variable problem with only one controlling parameter. The 
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number of variables is increased by combining a number of two-variable problems to 
obtain a separable multivariable problem. The separable problem is then disguised 
by the use of a clever transformation. 

The purpose of this paper is to present a technique for generating bilevel pro- 
gramming test problems in R" that need not be separable in the constraints and 
do not require any transformations. Our method follows the path of constructing a 
random polytope in R ~ and then selecting a vertex of this polytope that is bilevel 
optimal. The proposed method requires only the use of linear programming and 
some local vertex search. The method is easy to implement numerically. 

The paper is divided as follows: Section 2 describes the basic properties of linear 
bilevel programming problems which are essential in our construction procedure. 
Section 3 describes the method of selecting a first optimal solution candidate, and 
in section 4 the lower-level constraint selection is presented. In that latter section 
the global solution is also selected. Section 5 presents the random construction of 
the constraint set for the upper and the lower-level problems along with the right- 
hand side vector and the upper and the lower-level objective functions. Finally, in 
section 6 a numerical example illustrates the method. 

2. P rope r t i e s  of  Linear  Bilevel P r o g r a m m i n g  P r o b l e m  

A linear bilevel programming problem is defined as follows, 

min c~ x + d~ y 
(~n)>o 

A l x  + B l y  < bl 

where y solves, (P) 

rain c2 y x + d Tz 
z_>0 

A2x + B2z <_ b2 

where A1, B1, A2, and B2 are matrices of size (ml × nl), (ml × n2), (m2 x hi), 
(rn 2 x n2), respectively; vectors z E R ~', y E/~n~ bl E R m~ , and b2 E R m2. 
The lower problem involves only minimization over y; and therefore, without loss 
of generality, we subsequently assume c2 -- 0. 
Let, 

¢(x) = min{d{y I B2y < b ~ -  A2z, y k 0} 

denote the optimal value function of the lower level problem. In addition let, 

g(x, y) = d~y - ¢(x), 

and 

P = {(x,y)I  A x +  By  < b, x >O, y > 0 } ,  
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denote a gap function, and a bounded nonempty polyhedron in R'*, for n = nl q-n2, 
respectively; where, 

( )  A =  A1 B =  b =  . 
A2 ' B2 ' b2 

Clearly problem (P) is equivalent to the following facial reverse convex program, 

rain c T x + d~ y 

s.t. (z,y) E P  

< o 

(Q) 

It is well known that  an optimal solution of a reverse convex problem is on the 
intersection of the boundary of the reverse convex constraint, vgg, and an edge of 
the polytope P (see Hillestad and Jacobsen [11]). The following proposition [5], [22] 
will show that  in the case of a facially reverse convex constraint problem, an optimal 
solution is at a vertex of P.  

PROPOSITION 1 I f  (Q) is solvable then an optimal solution is achieved at a vertex 
of P.  

Proof :  If (x, y) solves (Q) then (x, y) E P and dr2y = ¢(z).  Define the feasible set 
F = {(z, y) E PI g(x, y) = 0}. If  F ~ ¢, then F is the set of optimal solutions of 
the following concave minimization problem, 

min {g(x,y)l (z,y) E P},  

and thus F is the union of some the faces of P (see Rockafellar[21], theorem 32.1). 
Since P is compact and the optimal solution of (Q) must minimize the linear func- 
tion c T x+d~" y on F,  it follows that  at least one solution is achieved at a vertex of P.  

[] 

Let M(x),  the set of optimal solution of the lower problem, be the follower's rational 
reaction set to a given z. The union of all possible vectors that  the upper level may 
select, x E P,  and the corresponding 'rational reaction' by the lower level, y E M(x ) ,  
is called the Inducible Region (IR), a terminology borrowed from Bard [3]. It has 
been shown that  the inducible region is connected [10]( an excellent description of 
the geometry and properties of bilevel programming is given in Benson [4]). 

It is clear from the geometry of the problem and the proof of proposition 1 that  
the inducible region is on the faces of the polytope P and hence the phrase facial 
reverse convex program for the problem (Q). 
The above properties are important  components of the test generation technique 
proposed in this paper. 
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3. M e t h o d  o f  C o n s t r u c t i o n  

Given arbitrary A, B, b, cl, dl, and P = {(z,y)  l A x + B y  <_ b, x >_ 0, y _> 0}, 
where P is not empty and bounded, we wish to partition [A, B] = [A1, A~; B1, B2] 
in order to create a problem of the form (P) for which we know the optimal solution. 
Let, 

(~, ~) E Argmax{c~x  ~- d~y I (x, y) e P}.  

(x, Y) E Argmin{c~x  + d~y] (x, y) e P} .  

Select (x ' ,y ')  E P such that (x ' ,y ')  = (~, 9) -}- #"  ((&, t)) - ($, Y)), # E (0, 1). 
Furthermore, let z I = c~x I + dTly I, and define the half-space H I as, 

H '  = {(x, Y)I cT1 x -t- dTy > z'}. 

Let, 

f2 = P n H I 

Clearly, (2, 9) ~ ft. Let ~ = (~, ~) denote the optimal solution of the following 
linear programming problem, 

= (~, ~) = Argmin{cT1 x + dTyl (x, y) E fl}. 

Assume that ~ is a nondegenerate vertex of f~ that lies on an edge of P .  Let 
s - (x, y) be a neighboring vertex of ~ = (~', ~) such that c~x q- d~y > c ~  -k d~fl. 
In practice, s can be found by computing the basis vector of the null space of the 
active constraints of P at ~, or by the use of the optimal Simplex tableau associated 
with ~. Next, solve the following problem by fixing the x component of s -- (x, y), 

min d~y 

s.t. By <_ b -  Ax 

y_>0,  

and denote its optimal solution by y~. If yt is identical to y then (x, yt) or equiva- 
lently (x, y) is bilevel feasible (i.e. s E IR). Hence s ° = (x °, yO), the first candidate 
for the global solution of the generated bilevel programming test problem, is ini- 
tialized at s - (x, y). On the other hand, if yl ¢ y then (x, yl) E 0P ,  where a P  
denotes the boundary of P ,  and select s o by the following active set strategy. More 
specifically, let I + denote the set of active constraints of P at the point s t -- (x, ye), 
and I -  denote the set of inactive constraints at the point s l. 
Consequently I +, I -  can be defined as follows, 

I + -- {i I A ix  q- B~y = bi} 



TEST P R O B L E M  CONSTRUCTION 239 

I -  = {i [ Aiz  + Biy < bi}, 

where I+,  and I -  include the non-negativity constraints as well and, therefore, 
{I+ U I -  } enumerates all the constraints of P.  Let s o = (z °, y0) denote the optimal 
solution of the following subproblem, 

min c~x+d~y 
x~y 

s.t. 

Aix + B iy=b i ,  i E I + (SP(sl)) 

Aix ÷ Biy < bl, i E I -  

4. L o w e r - L e v e l  C o n s t r a i n t s  S e l e c t i o n  

Thus far, we have designated a vertex, s °, to be a candidate for the global solution 
of the bilevel programming problem. Next, we will identify certain rows of P that  
will be designated as the lower level constraint set in order to ensure that  s ° is not 
a trivial solution of the bilevel problem. 

To this end, define a lower bound z ° = c~z  ° + d~y ° ÷ e, for e > 0 and small. Let 
I denote the index of the constraint set for the lower level problem, where initially 
I = ¢. Constraints are appended to the set I according to the following strategy. 
Select mo < n and let, 

T o = { 1 , . . . , m o } ,  

denote the index set of the subset of the tight constraints of P at s o - (z °, y0). 
For each j E To, let I + = {j} and sJ = (z j ,  yJ) be the solution of the subproblem 
(SP(s°)). Constraint j is appended to the set I if cl-rz j ÷ d~y j > z °, 

I = I U {j}. 

Assume that  we have selected a number of constraints, I = { 1 , . . . , p } ,  p < m, 
where m = ml ÷ m2, and that  we are at some vertex v ~ = (z k, yk) of P.  Let N(v k) 
denote the set of all the neighboring vertices of v k, and let, 

NV(v  k ) =  { v e  N(v h) ] c T z ÷ d ~ y  > cTz k ÷d~yk} .  

Select a vertex v j e NV(vk),  and let T(v j )  -- { 1 , . . . ,  r}, r > n, denote the index set 
of tight constraints of P at v j .  Select Tj, a small arbi trary subset of T(v j ) ,  and for 
each i E :/~ denote by s i -- (x i, yl) the optimal solution of the linear programming 
subproblem (SP(vd)). 
If, 
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then append the i th constraint to the set I, I = I U {i}. On the other hand, if 

z' < c'[x i + d T y  i < z °, 

then reset s o to s i, and I = IO  {i}. Let k = j and continue the process until a pre- 
determined number of constraints is systematically selected. We have constructed 
the following linear bilevel programming problem, 

min c T x + dl r y 
(~,~)>0 

where y solves, 

A i x  + B i y  < bi, i ¢ I  

min d Tz 
z>O 

A i x  + Biz  < bi i E I ,  

and by way of construction, the inducible region remains connected and the global 
solution of the above bilevel programming problem is at vertex s o = (x °, yO). 

The theorem below, the proof of which has already been given above, summarizes 
the main result of this section. 

THEOREM 1 Let a polytope P,  a nondegenerate vertex s o = (x °, yO) of P,  and the 
set I be given with the desired properties as described in this section. Then problem 
(P) and equivalently problem (Q) attain their global solution at s o = (x °, yO). 

5. C o n s t r u c t i o n  of  a R a n d o m  P o l y t o p e  

In this section, we describe a method by which the polytope P, the right-hand 
side b = (bl, b2) T, and the vectors of the upper-level objective, c = (cl, dl) r are 
randomly generated. We have employed a method contained in [13], [12]. 

The matrices A and B, and the right-hand side vector b that  define the polytope, 

P = { ( x , y ) [ A x + B y < _ b ,  x >_O, y >_O} 

are generated in the following way, 
Given m = ml + m2, and n = nl + nz, for i = 1 , . . . ,  ( m -  1) and j = 1 , . . . , n ,  

the elements of the matrices A, and B,  and the components of the objective vector 
c are uniformly generated in the range ( -1 ,  1). The last row of the constraint 
matrix is uniformly generated in [0, 1], and each right-hand side bl, (i = 1 , . . . ,  m) 
is generated in a similar way by, 

bi = ~ Aij  + Bij  + 2it, i = l,  . . . , m, tt E [O, 1] 
j----1 

Obviously, we have P ¢ ¢ and bounded. 
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6. N u m e r i c a l  E x a m p l e  

This section presents a numerical example generated by the procedure outlined in 
this paper (see also [17]). 

The following matr ix  is randomly generated with m = 10 rows, and n = 6 columns. 
The number of variables controlled by the upper level is nl = 4, and the number 
of variables controlled by the lower level is n2 - 2. 

A = 

- 6  1 1 - 3  - 9  - 7  
- 9  3 - 8  3 3 0 

4 - 1 0  3 5 8 8 
4 - 2 - 2  1 0 - 5  8 
9 - 9  4 - 3  - 1  - 9  

- 2  - 2  8 - 5  5 8 
0 4 5 10 0 0 
7 2 - 5  4 - 5  0 

- 9  9 - 9  5 - 5  - 4  
5 3 1 9 1 5 

b = ( -15 ,  - 1 ,  25, 21, - 1 ,  20, 26, 11, - 5 ,  32) x 

e 1 ---- (--4, 8, 1, --1) T, dl -- ( 9 , - 9 )  T, d2 - ( - 9 ,  9) T 

The optimal solution to the problem (Q), relaxed by dropping the facially reverse 
convex constraint, is 

x = (1.5000, o, 0.8000, o) T, and ~ = (0, 2.07~0) T 

with the optimal value of ~ - -23.8750. 

The procedure then selected, s o = (x °, yO) the bilevel global solution, [ 157503 040387827e+00] [ ] 
xo = 8.366801330798415e- O1 yO = 1.887654467680594e+ O0 

1.888070342205340e- O1 ' 0 

2.170924429657799e + O0 

with an optimal objective value of z ° = 1.540007129277554e+ 01. 
After the selection of s o , the algorithm systematically assigned the constraints 
number 1,7,9, and 10 to the lower level constraint set. The overall problem is as 
follows, 
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min 
(~,y)>0 

s.t. 

where y solves, 

- 4 x l  -t- 8x~ ÷ xs - x4 ÷ 9yl - 9y2 

- 9 x l  + 3x2 - 8x3 + 3x4 -{- 3yl _< - 1  

4xl - 10x2 + 3x3 + 5x4 + 8yl + 8y2 <_ 25 

4xl - 2x~ - 2x3 + 10x4 - 5yl + 8y2 _< 21 

9xl - 9x2 + 4x3 -- 3x4 - Yl - 9y2 < - 1  

- 2 x l  - 2z2 + 8z3 - 5x4 + 5yl + 8y2 < 20 

7xl + 2x2 - 5xs + 4x4 - 5yl _< 11 

min - 9 z l  +9z2  
z_>0 

s.t. 

- 6 x l  + x2 + x 3 -  3 x 4 -  9zl - 7z2 < - 1 5  

4x~ + 5x3 + 10x4 _< 26 

- 9 x l  + 9x2 - 9 ~  + 5x4 - 5zl - 4z2 _< - 5  

5xl + 3x2 + xa + 9x4 + zl + 5z2 _< 32 

7. Concluding Remarks 

Test problems are an impor tan t  component  for the evaluation and comparison 
of mathemat ica l  algorithms, particularly for this class of nonconvex optimization 
which lacks sufficient theoretical criteria for determinat ion of global optimality.  In 
this paper, we presented a method for generating test problems for linear bilevel 
programming.  The method generates test problems in which the constraints need 
not be separable. In addition, the method can control the selection of the opt imal  
vertex with varying 'distance '  f rom the opt imal  solution of the relaxed problem. 
The method requires only the solution of linear programs.  
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